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The apparent contradiction between a covalently delocalized picture of the Si:Fe{ system, suggest-
ed among others by the large reduction of the central nucleus hyperfine interaction parameter as
compared to the free ion, and the localized picture as has emerged from the analysis of a recent
electron-nuclear double resonance (ENDOR) experiment, is resolved by a reinterpretation of the
ENDOR data in a linear-combination-of-atomic-orbital treatment, that takes the spin multiplicity
and symmetry properties of the paramagnetic (e)? state into account. This reinterpretation is con-
firmed by the determination of the relative signs of the 2°Si hyperfine interaction tensors in an
ENDOR experiment under uniaxial stress. The data obtained are consistent with a 25% spin locali-

zation on the first six shells of silicon neighbors.

I. INTRODUCTION

Recently electron-nuclear double resonance (ENDOR)
data on interstitial iron (Fe’,3d%S=1) and titanium
(Tif,3d%S =) in silicon have become available."?> In
the past ENDOR measurements have provided valuable
information regarding the distribution of the ss)in density
over the silicon lattice in a variety of systems,”~’ and, in
the case of the shallow donors, these data formed a criti-
cal test for the effective-mass theory.*® It may be expect-
ed that the Fe{ and Ti} ENDOR data provide a stringent
test for theoretical calculations on transition metals in sil-
icon as well. The most successful calculations thus far are
those by Katayama-Yoshida and Zunger'®!! and Beeler
et al.,'? who reproduce the experimentally observed donor
and acceptor levels of the interstitial 3d transition metals
in the band gap of silicon quite' accurately. These self-
consistent Green’s-function calculations furthermore con-
firm the phenomenological model of Ludwig and Wood-
bury,'3 describing the EPR spectra of interstitial and sub-
stitutional 3d transition metals in silicon for all experi-
mental EPR spectra observed thus far. They also give de-
finite predictions for the spin transfer from the central ion

to the silicon lattice: Beeler et al. predict a 12% spin
transfer for Fe! and a 58% spin transfer for Tij;
Katayama-Yoshida and Zunger give a 29% spin delocali-
zation for the Fe{ system.

Among the experimental data that can give information
about this spin transfer is the observed reduction of the
hyperfine interaction parameter 4 of a transition-metal
ion when embedded in a silicon matrix. If the Ludwig-
Woodbury model is adopted, this reduction must be due
to a reduction in the polarization of the 1s, 2s, and 3s
core states. This polarization is known to be directly pro-
portional to the spin density in the 3d orbitals throughout
the 3d transition series'* and the observed reductions in 4
therefore reflect the transfer of spin density to the lattice.
The experimental values (for Fe), a 43% reduction'®!?
and for Tif, a 75% reduction®'%) thus seem to indicate a
substantial spin transfer. Further information can be ob-
tained from an analysis of the parameters describing the
interaction of the electronic spin density with the 4.7%
abundant magnetic 2°Si nuclei, obtained from EPR (Ref.
16) and ENDOR (Refs. 1 and 2) measurements. The
ENDOR measurements on the Fe? system were per-
formed by Greulich-Weber et al., who could assign the

TABLE 1. Parameters and orientations of hyperfine tensors of 2’Si neighbors of Si:Fe] (in kHz). Ex-
perimental uncertainty is +10 kHz [from Greulich-Weber et al. (Ref. 1)]. For comparison we included
the calculated values by in the point-dipole approximation, assuming 100% spin localization on the

central nucleus and a positive g value.

Tensor a’ b’ ¢’ Zwe baa Shell
31 —160 — 1400 0 [111] —1249.2 1
3 780 —200 0 [111] —156.2 4o0r5
33 3250 —160 0 [111] —156.2 Sor4
T1 —4640 — 800 —520 [100] —811.4 2
M1 —3870 —440 + 70 <[111)=11° —177.9 3
M2 —380 —90 -2 <[111]=2.6° —78.4 6
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hyperfine interaction tensors to specific shells of silicon
neighbors due to a striking correspondence between exper-
imental values of the anisotropic part of these tensors and
those calculated in a point-dipole approximation, assum-
ing 95% of the spin density to reside on the iron nucleus.
For convenience these results are reproduced in Table L
This interpretation is therefore consistent with a high de-
gree of spin localization on the central nucleus and con-
tradicts the conclusion reached above. In the case of the
Ti} data such a correspondence between measured and
calculated anisotropic hyperfine interaction parameters
could not be found, indicating a larger covalency. In a
linear-combination-of-atomic-orbital (LCAO) treatment
(reviewed by Owen and Thornley'”) that takes spin multi-
plicity and symmetry properties of the paramagnetic
ground state into account, an estimate for the minimum
spin transfer of the Tif system (~40%) could be ob-
tained. In this case the agreement between the experiment
(spin transfer between 40% and 75%) and theory (Beeler
et al.. 58%) is excellent. For Fe} the spin transfér de-
rived from the ENDOR data ( ~5%) is reasonably con-
sistent with the calculations by Beeler et al., but it seems
that the 12% spin transfer they obtain cannot be held
solely responsible for the above-mentioned 43% reduction
in A. In contrast, Katayama-Yoshida and Zunger obtain
reasonable agreement between the calculated and experi-
mental hyperfine field on the Fe nucleus, but find a 29%
spin delocalization at variance with the ENDOR results.
The basic problem is, of course, the oontradlctlon between
the spin transfer as derived from °Si ENDOR (~5%)
and that obtained from the reduction in A4 for >'Fe
(~43%). It will be shown in the following that this diffi-
culty can be resolved by applying the same LCAO treat-
ment as used for the analysis of the Ti; ENDOR data, in-
stead of the one-electron treatment of Watkins and Cor-
bett'® that was applied in the description of S =7 sys-
tems and was also used in Ref. 1. It allows an interpreta-
tion of the Fe ENDOR data in which the spin density is
more delocalized than the 5% obtained by Greulich-
Weber et al., even when corrections for the distant
dipole-dipole interaction are taken into account. We will
furthermore present evidence supporting this mterpreta~
tion, obtained from an ENDOR experiment on the Si: Fe,
system with simultaneous application of uniaxial
compressive stress. This allowed the experimental deter-
mination of the relative signs of the hyperfine interaction
tensors and the elimination of the existing ambiguity in
interpretation of the ENDOR data.

II. PRELIMINARIES

A. Symmetry orbitals
and hyperfine interaction tensors

The LCAO treatment that will apply to the Fe{ case is
entirely equivalent to the case of Tij; approximations and
calculational procedures have already been discussed in
detail in Ref. 2, to which we also refer for notation. The
systems aré different, however, in their ground states;
paramagnetlsm arises from three electrons in tz states for
Ti} and from two electrons in e states for Fe, Conse-
quently, we will describe the wave function of the Fe’
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FIG. 1. Orientations of o and 7 orbitals on atoms of the dif-
ferent symmetry shells. The o orbitals are always taken to point
into the direction of the central ion for all shells. (a) A 3-class
shell. The numbers 1, 2, 3, and 4 refer to the ligands at posi-
tions nnn, AnA, nAA, and Ffin (n integer), respectively. The ),
and m,, orbitals are along [121] and [ 10T] directions, respective-
ly. Orientations of the orbitals on 2, 3, and 4 are obtained by C,
rotations about the x, y, and z axes. (b) A 2mm-class shell.
The numbers 1 to 6 refer to positions 002n, 2100, 02n0,
2700, 02/ 0, 002A. The 7 orbitals are along the positive x, y,
and z directions for all atoms. (c) A m-class shell. The num-
bers 1 to 12 refer to nnm, ARim, Ainm, nAm, nmn, AMn, AmMA,
nmf, mnn, mfin, mAnA, and #nfA. The m, and m, orbitals are
along [110] and [ /i 2n), respectively. Orientations of the or-
bitals on 2 to 12 are obtained by C, and Cj; rotations of the sil-
icon lattice.
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ground state by taking linear combinations of 3s and 3p
orbitals of the silicon lattice which transform as the e ir-
reducible representation of the 43m symmetry point group
and admix these to the d ;. and d,,_, orbitals of the
same e representation.

For a 3-class shell, with atom positions and ligand orbi-
tals as shown in Fig. 1(a), we obtain the following expres-
sions for the symmetry orbitals:

Vo o=ad, s o+ 8 (T1y + Mo +5x +14y)
—\/3(1T|y +7T2y +1T3y +1T4y)] >
q’xz_yzzadxz_yz-{— %8,[ (ﬂ1y+1T2y+1T3y +7T4y)

+\/§(1T|x + Ty +Tax +1T4,,)] s
(D

yielding the following hyperfine interaction tensor for
atom 1:

F= L g 2 g
25" 0 0 —-2b
~by O O
+§(2a2) 0 —by O (2)
0 2bgy
with Huo/dm)gupgnun(r ) and

bag=o/ 4ﬂ)g,uBgN,u,NR =3 (R is the Fe- 2931 distance).

The isotropic part a of the hyperfine interaction tensor is
]

‘1’2 adzz
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zero by symmetry in this approximation. Due to our
choice of coordinate system this tensor is on principal
axes.

For a 2mm-class shell [Fig. 1(b}] we get:
4 1_r2= ad

3z

(231 +2$6—52—33 —-S4~S5)

1
3,2_,z+ﬁﬁi
+ —‘/11=27i(201+206"02_03_04“‘05) ,
3
v 2—]’2: adxz

. _yz+‘;’ﬁi(sz+s4'—53—ss)

+'1LY((0'2+04—03—05) ,

yielding the following hyperfine interaction tensor for
atom 1:

| -5 0 0
B=—=(i¥H|0 —b 0
28 0 0 2b
|-t 0 0
1.,
+55(2a) | 0 —bu O |,
0 0 2by

(4)

25 (3B

Note that the off-diagonal element is zero to this order al-
though the tensor is in Cartesian coordinates.

For an m-class shell [Fig. 1(c)] we obtain the following
symmetry orbitals:

1
= —ZE(‘;‘B?)%#()&#BEN#N |51(0)| 2=

1
+-\7=8-B'( —~S5—S¢—S7—Sg+S9+S10+511 +S12)+ "7‘—8‘71( —0s—0—07—03+09+019+01+0y3)

1
+7—55i[(17’1x +T2x + T3 +Tax ) — F(Tsx +Tgx +T7x + Tay +Tox +Ti0x +T11x +Ti2x )]

1
+"7-8‘€r('-‘”5y—7"6y—177y—7fay + Moy + 10y + 11y +T12y) »

(5

1
Vo o=ad,, .+ 7—;31[(31 +524+53+54)— 7S5+ +57+55+59+510+511 +512)]

1
+ 761’.'[(01 +02403+04)— $(05+06+074+ 05+ 09 +0 10+ 011 +013)]

1
+"7—§61(775x +Mex +T7x +Tgx —Mox —Tox —Ti1x —Ti2x)

1
+T/-z€i[(7rly + oy + T3y +ay ) — 7 (s, + ey +7, + gy + oy + 10y +Ty1y +12,)]

yielding for atom 1 the hyperfine interaction tensor components:

1
By =5 [5(28]—yi—€eDb —2a%y), B,,=

B,,=B,, = 232

= —2-5;( ?Bi Jag .

2 yi€b, By =B, =B, =B, =0,

54268y b —2a%,), B

1
=55 [(2vi=8]—€hb +4a’bu] ,

(6)
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This tensor is given in the om, 7, coordinate system de-
fined in Fig. 1(c).

As Greulich-Weber et al. did not observe any hyperfine
interaction with lattice sites of general symmetry this type
of shell is not considered.

The transfer to the 7 orbitals for 2mm shells turns out
to be forbidden; as a consequence the Cartesian hyperfine
tensor contains to first order no off-diagonal terms and is
exactly (100) axial. Experimentally these tensors were
found to have their largest eigenvector along the (100)
axis, but are not really axial as evidenced by the b'/c’ ra-
tio of about 1.5. Still we can conclude that the distant
dipole-dipole interaction with the spin density on the cen-
tral ion and transfer to the o orbital dominate the hyper-
fine interaction, especially when compared to the Ti; sys-
tem, where the transfer to the 7 orbitals is allowed and
dominant, resulting in an approximate (011) axiality of
these tensors. For this latter system the off-diagonal ten-
sor element is 4751.6 kHz,? which is an order of magni-
tude larger than for Fe?, where it amounts to 520 KHz.!
The magnitude of the off-diagonal tensor element could
possibly be explained by including the multicenter contri-
butions in the calculation of Eq. (4); for the moment this
first-order approximation will suffice however.

In the case of the 3-class shells the transfer to s and o
orbitals is forbidden. The spin density in the 7 orbitals

gives rise to a contribution to B opposite in sign to that of
the distant dipole-dipole interaction and therefore oppo-
site in sign to (and moreover half the size of) that found in
the more usual one-electron treatment.'® The sign of b’ is
thus dependent on which of these contributions dominates
the hyperfine interaction, which could be determined ex-
perimentally if a’ was determined by spin transfer and not
required to be zero. Experimentally a’ values are found
to be nonzero and in one instance (tensor 33) of substan-
tial magnitude (although the corresponding spin density
would be less than 0.3%). It could be that a' for 3-class
shells is determined by exchange polarization of the closed
electron shells on the ligands as proposed in Ref. 1, an ef-
fect we did not consider in deriving Eq. (2). This (and the
fact that the off-diagonal element of T'1 is nonzero) might
be taken as evidence that the paramagnetism does not
arise from the e states only and would confirm a result
from the spin-polarized Green’s-function calculations by
Katayama-Yoshida and Zunger'”© where a 5:1 magnetic
moment distribution over the e and ¢, states is obtained
as a result of the polarization of the filled ¢, states by the
spin density in the e states. The unbalance in the spin
up-down transfer from the ¢, states to the lattice could
give rise to additional hyperfine interaction. The isotropic
part a' of the 3-class shells is then not necessarily of the
same sign as for the other symmetry shells, where spin
transfer from the e state is allowed and can be expected to
dominate all other effects. This has been recognized by
Greulich-Weber et al., who take the opposite sign of a’
for tensors 32 and 33 (in comparison to the other four) in
order to arrive at the correspondence between b, and
bag. Since the overall sign of the hyperfine interaction
tensors cannot be inferred from the ENDOR data, this is
a legitimate choice and a reasonable one, in view of the
correspondence above. If one assumes however that this
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agreement is only fortuitous and takes the sign of a’ for
tensor 31 equal to that of tensors 32 and 33, the estimate
of the spin density on the first-neighbor shell increases
from a mere 1% to some 15%, since the sign of b’ must
be reversed simultaneously. It is obvious that this latter
interpretation is in far better agreement with the observed
reduction in central nucleus hyperfine constant than that
by Greulich-Weber et al. Another argument in favor
could be the fact that (for 90% spin localization on the
central ion and the experimental sign as chosen in Ref. 1)

b’'—byy =1400 kHz—0.9(1250 kHz)=275 kHz

of the hyperfine interaction must be due to a spin density
in the forbidden o orbital, since it is of the same sign as
bgq. That the transfer to the forbidden o orbital would
dominate over the transfer to the allowed 7 orbitals al-
ready for the first shell is rather unlikely. On the other
hand it may also be argued that the difference is only due
to the inaccuracy of the point-dipole approximation
and/or the neglect of the multicenter contributions in cal-
culating Eq. (2). At best we may conclude from these
considerations that the Fe ENDOR data are not necessari-
ly inconsistent with a delocalized spin density. It is obvi-
ous that this is critically dependent on the overall sign of
the hyperfine interaction tensors, making an experimental
determination of these signs very relevant.

B. ENDOR under uniaxial stress

Greulich-Weber et al. analyzed their data with the fol-
lowing spin Hamiltonian, containing electronic Zeeman,
hyperfine, and nuclear Zeeman interaction terms:

#=gupBS+ 3 (S 4;-I, —gyunB1L) , )
i
where the parameter i enumerates the lattice sites around

the defect. For an S =1, I =4 system this gives rise to
the level scheme of Fig. 2, where the EPR and ENDOR
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FIG. 2. Level scheme of the Si:Fe system (S =1, =) for

Aer>0 (1) and A4 <0 (2). Level ordering is consistent with
g =+2.070 and gy = —1.1097, but is not to scale.
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transitions are also indicated. The ENDOR transitions
are to first order given by:

hv=AE = |gyuyB —h-4-Bm, | , (8)

with h a unit vector along the magnetic field B. The
ENDOR spectrum is thus seen to be symmetric around
the nuclear Zeeman frequency v,=gyuyB/h. For a
§1ven orientation of the magnetic field and for each Fe-

%Si orientation in the lattice we therefore expect to find
three ENDOR lines, one above, one at, and one below v,
(unless the ENDOR pattern is so anisotropic that the Zee-
man frequency is crossed as, e.g., happens for tensor 31
where, as a result of second-order effects, there can be two
frequencies below or above v, for certain directions of B;
this does not change the essence of the following, howev-
er). Experimentally the ENDOR transitions are obtained
by monitoring the EPR intensity while scanning the radio
frequency; when an NMR transition is passed, this will
result in an intensity change of the EPR signal. Since the
ENDOR mechanism is based on spin-relaxation processes,
the intensity of an EPR line will be affected more by an
NMR transition connected directly to it, than by an NMR
transition that is only indirectly coupled. Experimenta.lly
this effect has already been observed for Tif and Crf in
silicon,'%?° and may be expected to occur for the Fe] sys-
tem as well. The ENDOR effect of transition 1+»2 for in-
stance is expected to be larger on EPR transitions
1<+3/2<4 than on EPR transitions 3«>5/4«>6, while the
reverse will be true for NMR transition 5+>6. Depending
on the sign of A,g:ﬁ-z-ﬁ we will either observe the res-
onance above the Zeeman frequency more strongly on
EPR transitions 1«+3 /2«4 (situation 1) or that below v,
(situation 2), while the reverse holds for EPR transitions
35/46. Unfortunately the EPR fine structure van-
ishes in cubic symmetry and a distinction between situa-
tions 1 and 2 cannot be made. It is however possible to
separate transitions 1+»3/2«>4 from 3«5/4«6 by apply-
ing uniaxial stress,'>?! which will reveal itself in EPR by
a sphttmg of the Fe) resonance into two components as
shown in Fig. 3. Formally this is accounted for by aug-

Bilonl
Fuloi1l

1 1 1 1 1 I i
776 777 778 779 780 781 782
B(mT)
FIG. 3. Recorder trace of the Fe) EPR spectrum at 1.5 K
and v, =22.5682 GHz, B||[011] under [0T1] uniaxial compres-
sive stress P =4.4 MPa.

menting the spin Hamiltonian Eq. (7) with a term s-D -S,
that does not affect the ENDOR frequencies to first or-
der, but separates transitions 1<+3/2++4 considerably
from 3e5/4«<»6. By performing ENDOR on both
stress-split EPR lines separately it becomes possible to
distinguish between situations 1 and 2, allowing the deter-
mination of the relative signs of the hyperfine interaction
tensors. If the sign of the g value is known it is even pos-
sible to establish the absolute sign, due to the thermal
population difference of the three level-pairs, leading to
the intensity difference of the stress-split EPR lines (Fig.
3).

III. EXPERIMENTAL
A. Procedure

Floating-zone dislocation-free P-doped silicon samples
(15%2X2 mm?, initial resistivity 100 Qcm) were
scratched with iron and subsequently annealed for 17 h at
1250°C under argon atmosphere in a closed quartz am-
poule. After diffusion the samples were quenched from
1250°C separately with various quenching speeds, ground
and chemically etched in order to remove a layer of ap-
proximately 0.1 mm. The samples were then stored at
77 K until the measurements. In all these samples the Fe)
EPR spectrum could be observed; the best signal (large
signal-to-noise ratio, little line broadening due to internal
stresses) was obtained from the sample most rapidly
quenched, that was therefore selected for the ENDOR
measurements.

These measurements were performed with a su-
perheterodyne spectrometer operating at 23 GHz and ad-
justed to detect the dispersion part of the EPR signal at
an incident microwave power of 1 uW. The magnetic
field could be rotated in the (011) plane of the sample and
was modulated at a frequency of 83 Hz. In order to
separate the EPR transitions we could apply compressive
stress along the [011] direction via a stainless-steel rod.
We used a silver-coated Epibond cavity; in the thin silver
layer on the cylindrical side wall of the cavity a spiral
groove was cut, making it suitable as an ENDOR coil. 3
For ENDOR measurements the rf field was square-wave
modulated at 3.3 Hz to allow double phase-sensitive
detection of the signal. The sample was held at 1.5 K by
pumping the He bath.

B. Results

The ENDOR resonance frequencies were computed
with the spin Hamiltonian Eq. (7) and the hyperfine pa-
rameters as given by Greulich-Weber et al. for the six
shells measured. The regions around these frequencies
were scanned in ENDOR with the magnetic field along
the [100], [111], and [011] directions without applied
stress. No resonances of M1 and T'1 could be observed
below the Zeeman frequency; although it is possible that
our ENDOR coil is less efficient in the low-frequency re-
gion where these resonances are expected, it is more likely
that our passage conditions were unfavorable for their
detection. These resonances are however not really neces-
sary for the sign determination of the tensors. In order to
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v(MHz) v(MHz)
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11.64 1168 1172 1176
v (MHz)
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FIG. 4. Recorder traces of the Si:Fe{ ENDOR spectrum at
1.5 K and v,=22.5682 GHz, B||[011] on the high-field (HF)
and low-field (LF) resonance of Fig. 3. For the same Fe-?Si
orientation the ENDOR transitions above and below v, appear
on different EPR components for tensor 31 (a). The shift of res-
onance frequency due to the difference in Bif and By is ex-
pected to be less than 10 kHz. Although the ENDOR lines
above v, occur for both 31 (a) and T1 (b) on the high-field reso-
nance this does not lead to the same sign of a’ of these tensors.
The resonances shown for T'1 do not coincide due to a small tilt
of the magnetic field rotation plane with respect to the (0T1)
plane.
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FIG. 5. The Fe interstitial (solid circle) surrounded by silicon
atoms. This figure also shows the coordinate system on which
the Cartesian hyperfine tensors and directions of eigenvectors of
Table II are defined.

exclude any mistake we made a least-squares parameter fit
to the observed resonances with a computer diagonaliza-
tion of the Hamiltonian, Eq. (7), keeping the electronic g
value fixed at g =2.070 and the nuclear g value at
gv=—1.1097.22 The parameters found were in agree-
ment with those of Ref. 1.

Next we applied 4.4 MPa compressive stress along the
[0T1] direction, thereby causing the EPR line to split into
its two fine-structure components and scanned the regions
in which the resonances where found in the unstressed
case, on both EPR lines separately. In the worst case
(M2,B||[100]) we observed a 2:1 intensity ratio of the
ENDOR resonances above and below Zeeman frequency
on the high-intensity EPR line; since this reversed on the
low-intensity EPR line we may attribute this solely to the
effect described in Sec. IIB. Usually the effect was far
more pronounced as can be seen in Fig. 4. The shift in
resonance frequency was within 2 kHz consistent with the
change in nuclear Zeeman frequency due to the difference
in resonance field B; the effect of stress on ENDOR line
positions is thus seen to be nearly negligible as expected.
These results are summarized in Table II; the magnitude
of the parameters is obtained from the unstressed data set
and the overall signs of the tensors are as determined
from the stressed ENDOR data, using an electronic g
value g = +2.070 and a nuclear g value gy =—1.1097.
The sign of the g value has been determined for several
defects in silicon (including the interstitial 3d transition-
metal Cr*) and was always found to be positive;? the ab-
solute signs of the hyperfine tensors are therefore prob-
ably as given in Table II. The tensors and directions of
eigenvectors in this table are defined in the coordinate sys-
tem of Fig. 5 and valid for the following.

(1) The atom on the [111] axis for shells 31—33.

(2) One of the two atoms on the [001] axis for T, since
no unique assignment of the hyperfine tensor to one of
these two atoms can be made.
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TABLE II. Parameters, orientations, and signs of hyperfine tensors of »Si neighbors of Si:Fe) (in
kHz), as determined in this work. Tensors are given in Cartesian components and as principal values
A; with corresponding principal directions #;. Experimental uncertainty is +0.7 kHz.

-

Shell A i A[ ﬁ,’
31 157.6 1402.1 1402.1 1 2961.8 (—0.577,—0.577,—0.577)
1402.1 157.6 1402.1 2 —1244.5 (+ 0.408,—0.816, +0.408)
1402.1 1402.1 157.6 3 —1244.5 (+ 0.707,40.000, —0.707)
32 776.5 —196.3 —196.3 1 3839 (—0.577,—0.577,—-0.577)
—196.3 776.5 —196.3 2 972.8 (+ 0.408,—0.816, +0.408)
—196.3 —196.3 776.5 3 972.8 (+ 0.707,+40.000, —0.707)
33 32447 —156.7 —156.7 1 2931.3 (—0.577,—0.577, —0.577)
—156.7 3244.7 —156.7 2 3401.4 (+ 0.408,—0.816, +-0.408)
—156.7 —156.7 32447 3 3401.4 (+ 0.707,+0.000, —0.707)
T1 —3842.7 —5144 0.0 1 —4357.1 (—0.707,—0.707, +0.000)
—5144 —3842.7 0.0 2 —3328.3 (—0.707,+0.707, 4+ 0.000)
0.0 0.0 —6239.7 3 —6239.7 ( + 0.000, +0.000, + 1.000)
M1 —3729.0 —361.4 —435.7 1 —3367.6 (—0.707,+0.707, +0.000)
—361.4 —3729.0 —435.7 2 —3504.5 (—0.512,—0.512, +0.689)
—435.7 —435.7 —4152.4 3 —4738.4 (+ 0.487,+0.487, +0.725)
M2 —398.5 —99.0 —-74.8 1 —299.6 (—0.707,4-0.707, +0.000)
-99.0 —398.5 —-74.8 —292.7 (+0.324,+0.324, —0.889)
—74.8 —74.8 —3473 3 —552.1 (—0.628,—0.628, —0.459)

(3) One of the two atoms in the (110) mirror plane, for
shell M1 and M2 (as for T1).

Data for atoms in the shells, other than just specified, can
be obtained by applying the appropriate symmetry
transformations.

Typical widths of the resonances were 2—3 kHz full
width at half maximum, allowing line positions to be
determined with an accuracy of 0.7 kHz. The deviations
of calculated ENDOR frequencies from experimental
values were generally less than this value. The parameters
of Table II are also given in terms of a’, b’, and ¢’ in
Table III, allowing convenient comparison to the data of
Greulich-Weber et al. in Table I.

IV. DISCUSSION

The agreement between experimental and calculated
values of b’ (point-dipole approximation) is clearly de-
stroyed, due to the fact that tensor 31 is of opposite sign
as chosen in Ref. 1. The assignment of experimental ten-
sors to specific lattice sites is therefore no longer evident.
All values of a’ of the 3-class tensors have the same sign
however, and are opposite to those of the other symmetry
shells; this can be taken as clear evidence that a' of the 3-
class tensors (a’'>0) is not determined by spin transfer
from the e state, since an electron in a 3s orbital gives rise
to a hyperfine interaction of @, = —4749 MHz.* In con-
trast, a' of the other symmetry shells is negative, as ex-

TABLE III. Parameters, orientations, and signs of the ’Si hyperfine interaction of the Si:Fe? system
in terms of a’, b’, and ¢’ (in kHz), this work. Experimental uncertainty is +0.7 kHz.

Shell assignment

Tensor a' b’ ¢’ Zys 1 2 3
31 157.6 1402.1 0 [111] 1 4or5 4or5
32 776.5 —196.3 0 [111] 4 o0r5 1 5or4
33 32447 —156.7 0 [111] 5 or 4 Sor4 1
T1 —4641.7 —799.0 —514.4 [100] 2 2 2
M1 —3870.2 —434.1 + 68.5 <[111]=11.2° 3 3 3
M2 —381.4 —85.3 —-3.5 <[111]=7.9° 6 6 6
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FIG. 6. Transferred spin densities (TSD’s) to the lattice versus spin localization a® on the Fe atom, as obtained from the hyperfine
interaction tensors in the assignments of Table III. (a) 3-class shells, assignment 1. Tensor 32 and 33 do not contribute any TSD in
this assignment (see the text). (b) 3-class shells. In assignment 2 only tensors 31 and 32 contribute TSD (solid line); in assignment 3
tensor 32 does not contribute (dashed line). The TSD obtained from 31 is equal in both these assignments. (c) m-class shells. In the
case of M1 only one assignment (within the 3TT shell) yielded real coefficients for the symmetry orbitals (a?>0.3). In the case of
M2 both assignments within the 331 shell yielded real coefficients, indicated by the solid and the dashed line. The former is used in
calculating M, and the total TSD. (d) Total TSD of all measured shells in assignment 1. The dashed line gives the connection be-
tween transferred and Fe-localized spin density.
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pected, since for them spin transfer to the silicon 3s orbi-
tals is symmetry allowed. This conclusion is independent
of the sign of the g value, since a' and a, will reverse sign
simultaneously if the g value would appear to be negative.
This observation therefore confirms the e symmetry of
the ground state.

In contrast to the case of Ti" it is possnble to determine
the wave-function coefficients ﬁz y,, 8,, and ez uniquely
from the experimental hyperfine interaction parameters
and to extract exact transferred spin densities (TSD’s), us-
ing the values for | 5,(0)|%and (r ~*),,%* once an assign-
ment of tensors to specific lattice sites has been made. We
will analyze the Fe? data for three possible assignments of
these tensors, summarized in Table III (notation as in Ref.
2). In all these assignments the total TSD is about the
same, but in assignment 1 the distribution of the spin den-
sity over the lattice is considerably different from that ob-
tained in assignments 2 and 3. In the former case the spin
density is mainly concentrated on the first shell and no
spin density can be obtained from 32 and 33 [Fig. 6(a)],
since b’ after correction for by, is of the wrong sign with
respect to Eq. (2). Assignments 2 and 3 both yield a spin
density on the first nearest-neighbor shell that is of com-
parable magnitude to that on the next 3-class shell (it is
even smaller), which is somewhat contrary to our intuitive
expectations [Fig. 6(b)] No TSD values can be obtained
for M1 for values of @ <0.3 without allowing imaginary
coefficients in the expressions for the symmetry orbitals
[Fig. 6(c)]. Since this corresponds to a spin delocalization
of over 70%, whereas the reduction in central nucleus hy-
perfine parameter 4 amounts to 43%, such a situation is
not likely to occur.

The total spin delocalization and the contributions from
the three classes of neighboring sites is shown in Fig. 6(d).
The dashed line in this figure represents the normalization
condition

a’+3 (B +vi+8]+€)=1
i

in which overlap integrals have been omitted. Inclusion
of these terms requires a more detailed knowledge of the
spatial extent of the atomic orbitals, while their influence
on the estimate of the total TSD is only marginal as evi-
denced by Fig. 6(d). In assignment 1 we therefore obtain
a spin localization of 25% on the six shells measured,
which is only slightly less in assignments 2 and 3. This
estimate complies well with the observed reduction in cen-
tral nucleus hyperfine interaction parameter A4 and is in
remarkable good agreement with the Green’s-function cal-
culations by Katayama-Yoshida and Zunger who predict
a 29% spin delocalization. In contrast to the Ti; system
the bulk of the transferred spin is not on the second-
neighbor shell, but rather on the first shell. Differently
stated: the t, state seems to be mainly hybridized with
the second-neighbor shell orbitals, while the e state is
mainly hybridized with orbitals on the first shell. It
would be interesting to see whether this could be experi-
mentally confirmed in another transition-metal system in
silicon or be produced in theoretical calculations.

The fact that tensors 32 and 33 do not yield a spin den-
sity in assignment 1 means that the spin density drops
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very fast with distance from the Fe nucleus; on the iron
nucleus itself we find approximately 75% of the spin den-
sity, ~16% on the first nearest-neighbor shell, on the
third shell ~8%, and next to nothing on the other shells
(which makes the iron system a good candidate for a clus-
ter calculation). There remains a part of b’ unexplained
for tensors 32 and 33 in this assignment; they still yield
some —35 and —75 kHz anisotropic hyperfine interac-
tion after subtraction of the distant dipole-dipole interac-
tion with the central nucleus (— 125 kHz for 75% Fe lo-
calization). As it is of the same sign as by, it must be
due to a spin density in the o orbitals (forbidden) or due
to multicenter contributions. The latter is probably the
case as one can see by calculating, for instance, the contri-
bution to b’ on the 222 lattice site due to the spin density
on the 111 position (~4%) in the point-dipole approxi-
mation, yielding an extra — 50 kHz. Similarly we can cal-
culate the contribution to the off-diagonal element of T'1
(—514 kHz) for atom 002 in the second shell from the
spin density on atoms 111 and T11 of the first shell in as-
signment 1, which amounts to ~ — 100 kHz in the point-
dipole approximation. The contribution from the matrix

element
Xy
<d312-r2 r3 oy

is zero for symmetry reasons and contributions from the
other shells can be neglected with respect to that from the
first shell. Clearly these multicenter contributions cannot
explain the observed value of ¢’ (T1) and we are therefore
led to conclude that it is probably caused by transfer from
the spin-polarized ¢, state, confirming the Green’s-
function results from Katayama-Yoshida and Zunger.
The occurrence of positive values of a' for the 3-class
shells is not in contrast to this, although the data do not
exclude the possibility that the aforementioned effects ori-
ginate in part (or completely) from spin polarization of or-
bitals transforming according to other irreducible repre-
sentations of the 43m symmetry group than ¢,.

V. CONCLUSIONS

The contradiction between the observed reduction in
central nucleus hyperfine parameter, indicating a relative-
ly delocalized spin density, and the ENDOR data of
Greulich-Weber et al., leading in their view to a highly
localized spin density, can be eliminated by a reinterpreta-
tion of their data. The experimental determination of the
signs of the hyperfine interaction tensors, as presented
here, strongly supports this reinterpretation and leads to a
fairly delocalized spin density (25%), in good agreement
with the spin-polarized self-consistent Green’s-function
calculations by Katayama-Yoshida and Zunger.
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